Mobile Measurements of Particulate Matter in a Car Cabin: Local Variations, Contrasting Data from Mobile versus Stationary Measurements and the Effect of an Opened versus a Closed Window

Author:

Dröge Janis,Müller Ruth,Scutaru Cristian,Braun MarkusORCID,Groneberg David

Abstract

Air pollution of particulate matter (PM) from traffic emissions has a significant impact on human health. Risk assessments for different traffic participants are often performed on the basis of data from local air quality monitoring stations. Numerous studies demonstrated the limitation of this approach. To assess the risk of PM exposure to a car driver more realistically, we measure the exposure to PM in a car cabin with a mobile aerosol spectrometer in Frankfurt am Main under different settings (local variations, opened versus a closed window) and compare it with data from stationary measurement. A video camera monitored the surroundings for potential PM source detection. In-cabin concentrations peaked at 508 µg m−3 for PM10, 133.9 µg m−3 for PM2.5, and 401.3 µg m−3 for coarse particles, and strongly depended on PM size and PM concentration in ambient air. The concentration of smaller particles showed low fluctuations, but the concentration of coarse particles showed high fluctuations with maximum values on busy roads. Several of these concentration peaks were assigned to the corresponding sources with characteristic particle size distribution profiles. The closure of the car window reduced the exposure to PM, and in particular to coarse particles. The mobile measured PM values differed significantly from stationary PM measures, although good correlations were computed for finer particles. Mobile rather than stationary measurements are essential to assess the risk of PM exposure for car passengers.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3