Abstract
The environmental risk of potentially toxic metals in tailing soils is of universal concern. We conducted a 3-month pot experiment to research the distribution and variations of potentially toxic metals (PTMs), and the translocation and accumulation capability of these metals (Cr, Ni, Mn, Cu, Zu) in natural plants for three Fe/Mg tailing soils (serpentine-type, olivine-type and magnetite-type) with growth of a grass plant-Imperata cylindrica. We used comparative analysis, regression analysis and correlation analysis to process relevant experimental data. Results showed the rhizosphere tailing soils decreased from 3.70% to 16.8%, compared to the bulk soils, after growth of Imperata cylindrica, and the acid soluble fraction of Mn, Cu and Zn increased significantly. Cu and Zn were more bioavailable than other PTMs, especially for serpentine-type tailing soils. Linear regression analysis indicated that non-residual fractions showed different effects on metal concentrations of Imperata cylindrica. The non-residual metal fractions of serpentine-type and olivine-type tailing soils showed better correlations with metal concentrations in grass plants than those of magnetite-type tailing soils. We found that the chemical compositions of tailing soils showed remarkable effects on Ni and Mn compared with other elements, especially Mg and Al. Overall, the grass plant can alter the metal distribution, enhance metal bioavailability and promote land use of Fe/Mg tailing soils.
Funder
National Natural Science Foundation of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献