The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers

Author:

Borelli Violetta,Trevisan Elisa,Francesca Vita,Zabucchi Giuliano

Abstract

Background: Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO2) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO2 to that induced by wollastonite employed as a control fiber. Methods: Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. Results: Asbestos and TiO2 stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO2 and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. Conclusions: (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes—this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO2 nanoparticles.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferruginous bodies exert a strong proinflammatory effect;Journal of Toxicology and Environmental Health, Part A;2023-02-21

2. Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes;Membranes;2023-02-01

3. Comparative study of titanium dioxide to improve the quality of finished cosmetic products;International Journal of Cosmetic Science;2023-01-11

4. Asbestos fibers promote iron oxidation and compete with apoferritin enzymatic activity;Journal of Toxicology and Environmental Health, Part A;2023-01-02

5. Autoantibodies and cancer among asbestos-exposed cohorts in Western Australia;Journal of Toxicology and Environmental Health, Part A;2021-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3