Hearing Loss, Tinnitus, Hyperacusis, and Diplacusis in Professional Musicians: A Systematic Review

Author:

Di Stadio Arianna,Dipietro Laura,Ricci Giampietro,Della Volpe Antonio,Minni Antonio,Greco Antonio,de Vincentiis Marco,Ralli MassimoORCID

Abstract

Professional musicians (PMs) are at high risk of developing hearing loss (HL) and other audiological symptoms such as tinnitus, hyperacusis, and diplacusis. The aim of this systematic review is to (A) assess the risk of developing HL and audiological symptoms in PMs and (B) evaluate if different music genres (Pop/Rock Music—PR; Classical Music—CL) expose PMs to different levels of risk of developing such conditions. Forty-one articles including 4618 PMs were included in the study. HL was found in 38.6% PMs; prevalence was significantly higher among PR (63.5%) than CL (32.8%) PMs; HL mainly affected the high frequencies in the 3000-6000 Hz range and was symmetric in 68% PR PMs and in 44.5% CL PMs. Tinnitus was the most common audiological symptom, followed by hyperacusis and diplacusis. Tinnitus was almost equally distributed between PR and CL PMs; diplacusis was more common in CL than in PR PMs, while prevalence of hyperacusis was higher among PR PMs. Our review showed that PR musicians have a higher risk of developing HL compared to CL PMs; exposure to sounds of high frequency and intensity and absence of ear protection may justify these results. Difference in HL symmetry could be explained by the type of instruments used and consequent single-sided exposure.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference93 articles.

1. The global burden of occupational noise-induced hearing loss

2. Interventions to prevent occupational noise-induced hearing loss

3. The Role of Oxidative Stress in Noise-Induced Hearing Loss

4. Protective properties of antioxidant drugs in noise-induced hearing loss in the guinea pig

5. The monitoring role of otoacoustic emissions and oxidative stress markers in the protective effects of antioxidant administration in noise-exposed subjects: A pilot study;Fetoni;Med. Sci. Monit.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3