Estimation of the Fe and Cu Contents of the Surface Water in the Ebinur Lake Basin Based on LIBS and a Machine Learning Algorithm

Author:

Zhang Xianlong,Zhang Fei,Kung Hsiang-te,Shi Ping,Yushanjiang Ayinuer,Zhu Shidan

Abstract

Traditional technology for detecting heavy metals in water is time consuming and difficult and thus is not suitable for quantitative detection of large samples. Laser-induced breakdown spectroscopy (LIBS) can identify multi-state (such as solid, liquid, and gas) substances simultaneously, rapidly and remotely. In this study, water samples were collected from the Ebinur Lake Basin. The water samples were subjected to LIBS to extract the characteristic peaks of iron (Fe) and copper (Cu). Most of the quantitative analysis of LIBS rarely models and estimates the heavy metal contents in natural environments and cannot quickly determine the heavy metals in field water samples. This study creatively uses the Fe and Cu contents in water samples and the characteristics of their spectral curves in LIBS for regression modelling analysis and estimates their contents in an unknown water body by using LIBS technology and a machine learning algorithm, thus improving the detection rate. The results are as follows: (1) The Cu content of the Ebinur Lake Basin is generally higher than the Fe content, the highest Fe and Cu contents found within the basin are in the Ebinur Lake watershed, and the lowest are in the Jing River. (2) A number of peaks from each sample were found of the LIBS curve. The characteristic analysis lines of Fe and Cu were finally determined according to the intensities of the Fe and Cu characteristic lines, transition probabilities and high signal-to-background ratio (S/B). Their wavelengths were 396.3 and 324.7 nm, respectively. (3) The relative percent deviation (RPD) of the Fe content back-propagation (BP) network estimation model is 0.23, and the prediction ability is poor, so it is impossible to accurately predict the Fe content of samples. In the estimation model of BP network of Cu, the coefficient of determination (R2) is 0.8, the root mean squared error (RMSE) is 0.1, and the RPD is 1.79. This result indicates that the BP estimation model of Cu content has good accuracy and strong predictive ability and can accurately predict the Cu content in a sample. In summary, estimation based on LIBS improved the accuracy and efficiency of Fe and Cu content detection in water and provided new ideas and methods for the accurate estimation of Fe and Cu contents in water.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3