Effect of C/N Ratio on the Removal of Nitrogen and Microbial Characteristics in the Water Saturated Denitrifying Section of a Two-Stage Constructed Rapid Infiltration System

Author:

Fang Qinglin,Xu Wenlai,Xia Gonghan,Pan Zhicheng

Abstract

The aim of this study was to improve the removal of nitrogen pollutants from artificial sewage by a modeled two-stage constructed rapid infiltration (CRI) system. The C/N ratio of the second stage influent was elevated by addition of glucose. When the C/N ratio was increased to 5, the mean removal efficiency of total nitrogen (TN) reached up to 75.4%. Under this condition, the number of denitrifying bacteria in the permanently submerged denitrifying section (the second stage) was 22 times higher than that in the control experiment without added glucose. Elevation of the C/N ratio resulted in lower concentrations of nitrate and TN in the second stage effluent, without impairment of chemical oxygen demand removal. The concentration of nitrate and TN in effluent decreased as the abundance of denitrifying bacteria increased. Moreover, the bacterial biofilms that had formed in the sand of the second stage container were analyzed. The secretion of extracellular polymeric substances, a major constituent of biofilms, was enhanced as a result of the elevated C/N ratio, which lead to the improved protection of the bacteria and enhanced the removal of pollutants.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference34 articles.

1. Experimental research of constructed rapid infiltration wastewater treating system;He;China Environ. Sci.,2002

2. New method of solving contradiction of rapid infiltration system land using;He;Geoscience,2001

3. ANALYSIS OF NITROGEN REMOVAL PERFORMANCE OF CONSTRUCTED RAPID INFILTRATION SYSTEM (CRIS)

4. The removal mechanism of ammoniac nitrogen in constructed rapid infiltration system;Wang;China Environ. Sci.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3