Adsorption of Cadmium on Degraded Soils Amended with Maize-Stalk-Derived Biochar

Author:

Wu Caixia,Li YunguiORCID,Chen Mengjun,Luo Xiang,Chen Yuwei,Belzile Nelson,Huang Sheng

Abstract

Biochar has been extensively proven to distinctively enhance the sorption capacity of both heavy metal and organic pollutants and reduce the related environmental risks. Soil pollution and degradation widely coexist, and the effect of biochar addition on adsorption behavior by degraded soils is not well understood. Four degraded soils with different degrees of degradation were amended with maize-stalk-derived biochar to investigate the adsorption of cadmium using batch methods. The maximum adsorption capacity (Qm) of degraded soil remarkably decreased in comparison with undegraded soil (5361 mg·kg−1→170 mg·kg−1), and the Qm of biochar increased with increasing pyrolysis temperature (22987 mg·kg−1→49016 mg·kg−1) which was much higher than that of soil. The addition of biochar can effectively improve the cadmium adsorption capacity of degraded soil (36–328%). The improving effect is stronger when increasing either the degradation level or the amount of added biochar, or the pyrolysis temperature of biochar. Contrary to the general soil–biochar system, adsorption of Cd was not enhanced but slightly suppressed (7.1–36.6%) when biochar was incorporated with degraded soils, and the adsorptivity attenuation degree was found to be negatively linear with SOM content in the degraded soil–biochar system. The results of the present study suggest that more attention on the adsorption inhibition and acceleration effect difference between the soil–biochar system and the degraded soil–biochar system is needed.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3