A Closer Look at the Bivariate Association between Ambient Air Pollution and Allergic Diseases: The Role of Spatial Analysis

Author:

Kim Dohyeong,Seo SungChulORCID,Min Soojin,Simoni Zachary,Kim Seunghyun,Kim Myoungkon

Abstract

Although previous ecological studies investigating the association between air pollution and allergic diseases accounted for temporal or seasonal relationships, few studies address spatial non-stationarity or autocorrelation explicitly. Our objective was to examine bivariate correlation between outdoor air pollutants and the prevalence of allergic diseases, highlighting the limitation of a non-spatial correlation measure, and suggesting an alternative to address spatial autocorrelation. The 5-year prevalence data (2011–2015) of allergic rhinitis, atopic dermatitis, and asthma were integrated with the measures of four major air pollutants (SO2, NO2, CO, and PM10) for each of the 423 sub-districts of Seoul. Lee’s L statistics, which captures how much bivariate associations are spatially clustered, was calculated and compared with Pearson’s correlation coefficient for each pair of the air pollutants and allergic diseases. A series of maps showing spatiotemporal patterns of allergic diseases at the sub-district level reveals a substantial degree of spatial heterogeneity. A high spatial autocorrelation was observed for all pollutants and diseases, leading to significant dissimilarities between the two bivariate association measures. The local L statistics identifies the areas where a specific air pollutant is considered to be contributing to a type of allergic disease. This study suggests that a bivariate correlation measure between air pollutants and allergic diseases should capture spatially-clustered phenomenon of the association, and detect the local instability in their relationships. It highlights the role of spatial analysis in investigating the contribution of the local-level spatiotemporal dynamics of air pollution to trends and the distribution of allergic diseases.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3