Projection of Future Extreme Precipitation and Flood Changes of the Jinsha River Basin in China Based on CMIP5 Climate Models

Author:

Yuan Zhe,Xu Jijun,Wang Yongqiang

Abstract

Projecting future changes in extreme flood is critical for risk management. This paper presented an analysis of the implications of the Fifth Coupled Model Intercomparison Project Phase (CMIP5) climate models on the future flood in the Jinsha River Basin (JRB) in Southwest China, using the Xinanjiang (XAJ) hydrologic model. The bias-corrected and resampled results of the multimodel dataset came from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Relatively optimal general circulation models (GCMs) were selected with probability density functions (PDFs)-based assessment. These GCMs were coupled with the XAJ model to evaluate the impact of climate change on future extreme flood changes in the JRB. Two scenarios were chosen, namely: a midrange mitigation scenario (Representative Concentration Pathway 4.5, RCP4.5) and a high scenario (RCP8.5). Results show that: (1) The XAJ model performed well in simulating daily discharge and was suitable for the study area, with ENS and R2 higher than 0.8; (2) IPSL-CM5A-LR and MIROC-ESM-CHEM showed considerable skill in representing the observed PDFs of extreme precipitation. The average skill scores across the total area of the JRB were 0.41 to 0.66 and 0.53 to 0.67, respectively. Therefore, these two GCMs can be chosen to analyze the changes in extreme precipitation and flood in the future; (3) The average extreme precipitation under 20- and 50-year return period across the JRB were projected to increase by 1.0–33.7% under RCP4.5 and RCP8.5 during 2020 to 2050. The Upper basin is projected to experience the largest increase in extreme precipitation indices, possibly caused by a warmer climate. The extreme flood under 20- and 50-year return period will change by 0.8 to 23.8% and −6.2 to 28.2%, respectively, over this same future period. Most of scenarios projected an increase during the near future periods, implying the JRB would be likely to undergo more flooding in the future.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3