Variation of Hydrothermal Conditions under Climate Change in Naqu Prefecture, Tibet Plateau, China

Author:

Gong Boya,Weng Baisha,Yan Denghua,Qin Tianling,Wang Hao,Bi WuxiaORCID

Abstract

Analysis of the suitability of hydrothermal conditions for vegetation growth would benefit the ecological barrier construction, water resources protection and climate change adaptation. The suitability of hydrothermal conditions in Naqu Prefecture was studied based on the spatial displacement of 500 mm precipitation and 2000 °C accumulated temperature contours. Results showed that the 500 mm precipitation contour had a shifting trend toward the southwest, with a 3.3-year and 7.1-year period, respectively, in the longitudinal and latitudinal direction, and the longitude changed suddenly around 1996. The 2000 °C accumulated temperature contour had a shifting trend toward the northwest, with a 1.8-year period and a 7-year sub-period in the longitudinal direction; the longitude had a catastrophe point between 1966 and 1967, while the latitude had a catastrophe point between 2005 and 2006. When located in the same vegetation zone, the annual precipitation in Naqu Prefecture was higher than the national average, while the accumulated temperature was lower than the national average, indicating that areas with suitable hydrothermal conditions suitable for vegetation growth showed a northwestward shift tendency. This research would help to support some recommendations for plants’ ecological system protection in alpine areas, and also provide guidelines for climate change adaptation.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3