Relationship between the Main Communities and Environments of an Urban River and Reservoir: Considering Integrated Structural and Functional Assessments of Ecosystems

Author:

Tang DehaoORCID,Liu Xingjian,Wang Xutao,Yin Kedong

Abstract

Rivers and reservoirs in urban areas have been associated with environmental quality problems because of the discharge of domestic waste into water bodies. However, the key effects and the extent to which environmental factors can influence the integrated structure and function of urban river ecosystems remain largely unknown. Here, a relationship model involving the species composition of the community and the various environmental factors related to the water and sediment was developed in the dry season (N) and the flood season (F) in both the urban Jiaomen River (JR) and the Baihuitian Reservoir (BR) of Guangzhou City. Canonical correspondence analysis was used to determine the spatiotemporal drivers of the phytoplankton, zooplankton and macrobenthic communities in the river and reservoir systems. The combination of the thermodynamic-oriented ecological indicators and the biodiversity measures reflected the integrated structure and function of the ecosystems. Overall, the plankton community composition was found to be largely determined by the nutrient concentrations and oxygen index, and the development of the macrobenthic communities was mainly restricted by organic matter and heavy metals. Based on the results of the integrated assessment, the structure and function of the JR ecosystem were superior to that of the BR, and the F period displayed healthier results than the N period. Moreover, the structural and functional statuses of the high eco-exergy grade communities (macrobenthic communities) in the ecosystem influenced the regional changes observed in the results of the integrated assessment. The significant seasonal variations in the plankton community affected the seasonal variations in the integrated assessment. The results of this study provide a scientific basis for the management and restoration of regional freshwater environments and ecosystems.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3