Abstract
Chinese Electronic Medical Records (EMRs) contains a large number of complex medical free text which includes a variety of information, such as temporal information, patients’ symptoms and laboratory data. However, as an important knowledge base, these unstructured text data in EMR are hard to process directly by computer to support further medical research. This paper proposes a novel text structuring method to extract knowledge from EMR texts and reorganize them in chronological order according to the temporal information in the text. By implementing some entropy-based algorithms as contrast, experiments evaluate the performance of the proposed method, which indicates the new method can significantly reduce the complexity of EMR text. This work is significant in structuring the EMR free text into temporal-structured data for further medical analysis.
Funder
National Natural Science Foundation of China
Humanities and Social Science Foundation of Ministry of Education of China
Fundamental Research Funds for the Central Universities
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献