Predicting Infectious Disease Using Deep Learning and Big Data

Author:

Chae Sangwon,Kwon Sungjun,Lee DonghyunORCID

Abstract

Infectious disease occurs when a person is infected by a pathogen from another person or an animal. It is a problem that causes harm at both individual and macro scales. The Korea Center for Disease Control (KCDC) operates a surveillance system to minimize infectious disease contagions. However, in this system, it is difficult to immediately act against infectious disease because of missing and delayed reports. Moreover, infectious disease trends are not known, which means prediction is not easy. This study predicts infectious diseases by optimizing the parameters of deep learning algorithms while considering big data including social media data. The performance of the deep neural network (DNN) and long-short term memory (LSTM) learning models were compared with the autoregressive integrated moving average (ARIMA) when predicting three infectious diseases one week into the future. The results show that the DNN and LSTM models perform better than ARIMA. When predicting chickenpox, the top-10 DNN and LSTM models improved average performance by 24% and 19%, respectively. The DNN model performed stably and the LSTM model was more accurate when infectious disease was spreading. We believe that this study’s models can help eliminate reporting delays in existing surveillance systems and, therefore, minimize costs to society.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3