Excretion of Urinary Metabolites of the Phthalate Esters DEP and DEHP in 16 Volunteers after Inhalation and Dermal Exposure

Author:

Krais Annette,Andersen Christina,Eriksson Axel,Johnsson Eskil,Nielsen Jörn,Pagels Joakim,Gudmundsson Anders,Lindh Christian,Wierzbicka AnetaORCID

Abstract

Phthalate esters are suspected endocrine disruptors that are found in a wide range of applications. The aim of this study was to determine the excretion of urinary metabolites in 16 individuals after inhalation and/or dermal exposure to 100–300 µg/m3 of deuterium-labelled diethyl phthalate (D4-DEP) and bis(2-ethylhexyl) phthalate (D4-DEHP). Dermal exposure in this study represents a case with clean clothing acting as a barrier. After inhalation, D4-DEP and D4-DEHP metabolites were excreted rapidly, though inter-individual variation was high. D4-DEP excretion peaked 3.3 h (T½ of 2.1 h) after combined inhalation and dermal exposure, with total excreted metabolite levels ranging from 0.055 to 2.351 nmol/nmol/m3 (nmol of urinary metabolites per phthalates air concentration in (nmol/m3)). After dermal exposure to D4-DEP, metabolite excretion peaked 4.6 h (T½ of 2.7 h) after exposure, with excreted metabolite levels in between 0.017 and 0.223 nmol/nmol/m3. After combined inhalation and dermal exposure to D4-DEHP, the excretion of all five analysed metabolites peaked after 4.7 h on average (T½ of 4.8 h), and metabolite levels ranged from 0.072 to 1.105 nmol/nmol/m3 between participants. No dermal uptake of particle phase D4-DEHP was observed. In conclusion, the average excreted levels of metabolites after combined inhalation and dermal exposure to D4-DEP was three times higher than after combined exposure to D4-DEHP; and nine times higher than after dermal exposure of D4-DEP. This study was made possible due to the use of novel approaches, i.e., the use of labelled phthalate esters to avoid the background concentration, and innovative technique of phthalate generation, both in the particle and the gas phase.

Funder

Svenska Forskningsrådet Formas

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3