Spatial Hurdle Models for Predicting the Number of Children with Lead Poisoning

Author:

Zhen Zhen,Shao Liyang,Zhang Lianjun

Abstract

Objective The purpose of this study is to identify the high-risk areas of children’s lead poisoning in Syracuse, NY, USA, using spatial modeling techniques. The relationships between the number of children’s lead poisoning cases and three socio-economic and environmental factors (i.e., building year and town taxable value of houses, and soil lead concentration) were investigated. Methods Spatial generalized linear models (including Poisson, negative binomial, Poisson Hurdle, and negative binomial Hurdle models) were used to model the number of children’s lead poisoning cases using the three predictor variables at the census block level in the inner city of Syracuse. Results The building year and town taxable value were strongly and positively associated with the elevated risk for lead poisoning, while soil lead concentration showed a weak relationship with lead poisoning. The negative binomial Hurdle model with spatial random effects was the appropriate model for the disease count data across the city neighborhood. Conclusions The spatial negative binomial Hurdle model best fitted the number of children with lead poisoning and provided better predictions over other models. It could be used to deal with complex spatial data of children with lead poisoning, and may be generalized to other cities.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3