Determination of Heavy Metals and Health Risk Assessment in Tap Water from Wuhan, China, a City with Multiple Drinking Water Sources

Author:

Liu Zufan12,Tao Shiyong12,Sun Zuyou12,Chen Yilin12,Xu Jing12

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan 430072, China

Abstract

The health issues of urban tap water are of great concern in the context of sustainability challenges to the environmental quality of water and the security of the water supply. In this work, tap water from the main urban areas in Wuhan and surface water from the Yangtze River and the Hanjiang River were collected during summer (June) and winter (December), 2022. The concentrations of 10 heavy metals including Fe, Al, Mn, Co, Ni, Cu, Se, Cd, Cr and Pb were determined for water quality evaluation and health risk assessment. The results demonstrated that almost all of the tap water samples contained metal concentrations below the Chinese national standard limits for drinking water (GB 5749-2022). The risk of heavy metals in tap water to human health was evaluated, and the results showed that the total carcinogenic risk (TCR) was in the range of 10−6 and 10−4 and the hazard index (HI) was much lower than one in both summer and winter. The current tap water in Wuhan is generally in a relatively safe state and will not cause acute hazards or chronic diseases in the short term, but the long-term cancer risk is still noteworthy. The heavy metal pollution index (HPI) showed that the overall water quality of urban drinking water sources in Wuhan has been satisfactory, despite its slightly polluted state in winter. Pipeline corrosion was considered as one of the important sources of heavy metals in Wuhan tap water, which can explain, to a certain extent, the increase in the heavy metal concentrations of tap water outlets relative to the finished water reported by waterworks, such as Fe, Ni, Cd and Pb. This study has implications for the formulation of better urban water supply security management strategies and associated sustainability challenges.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Hubei Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3