Modification of Poplar Wood via Polyethylene Glycol Impregnation Coupled with Compression

Author:

Liu YuhanORCID,Shi JiangtaoORCID,Leng Weiqi,Huang Qiongtao

Abstract

Wood permeability and compressibility are affected by cell wall structure and chemical composition. These properties can be improved by appropriate wood pretreatments. Low-density poplar wood was converted to a more dense structure by the following steps: First, lignin and hemicellulose were removed using a mixture of NaOH and Na2SO3. Second they were impregnated with polyethylene glycol (PEG, mean molecular weight of 1200), nano-SiO2, and a silane coupling agent at atmospheric temperature and pressure. Finally, impregnated wood was compressed at 150 °C. Results showed that the tracheid lumens on the transverse section of the compressed wood almost vanished. Specifically, the lumens in the wood cells, especially those that were compressed, were almost completely filled with PEG. In FTIR, the asymmetric absorption peaks of Si–O–Si at 1078–1076 cm−1 were clearly observed, which confirms the existence of bonding between nano-SiO2 and wood. The highest melting enthalpy and crystallization enthalpy showed a heat storage capacity of modified wood, which were 20.7 and 9.8 J/g, respectively. Such phase change capabilities may have potential applications in regulating the rate of change of room temperature. In summary, the modified wood could be utilized as material for construction to conserve energy.

Funder

the Innovative Training Program for Chinese College Students

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3