Hearing Recovery Prediction for Patients with Chronic Otitis Media Who Underwent Canal-Wall-Down Mastoidectomy

Author:

Chae Minsu1,Yoon Heesoo2ORCID,Lee Hwamin1ORCID,Choi June12ORCID

Affiliation:

1. Department of Biomedical Informatics, Korea University College of Medicine, Seoul 02841, Republic of Korea

2. Department of Otorhinolaryngology-Head, Head and Neck Surgery, Korea University Ansan Hospital, Ansan-si 15355, Republic of Korea

Abstract

Background: Chronic otitis media affects approximately 2% of the global population, causing significant hearing loss and diminishing the quality of life. However, there is a lack of studies focusing on outcome prediction for otitis media patients undergoing canal-wall-down mastoidectomy. Methods: This study proposes a recovery prediction model for chronic otitis media patients undergoing canal-wall-down mastoidectomy, utilizing data from 298 patients treated at Korea University Ansan Hospital between March 2007 and August 2020. Various machine learning techniques, including logistic regression, decision tree, random forest, support vector machine (SVM), extreme gradient boosting (XGBoost), and light gradient boosting machine (light GBM), were employed. Results: The light GBM model achieved a predictive value (PPV) of 0.6945, the decision tree algorithm showed a sensitivity of 0.7574 and an F1 score of 0.6751, and the light GBM algorithm demonstrated the highest AUC-ROC values of 0.7749 for each model. XGBoost had the most efficient PR-AUC curve, with a value of 0.7196. Conclusions: This study presents the first predictive model for chronic otitis media patients undergoing canal-wall-down mastoidectomy. The findings underscore the potential of machine learning techniques in predicting hearing recovery outcomes in this population, offering valuable insights for personalized treatment strategies and improving patient care.

Funder

Korea Government

MSIT (Ministry of Science and ICT), Korea

Ministry of Health and Welfare, Republic of Korea

Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health and Welfare, the Ministry of Food and Drug Safety

Ansan-Si hidden champion fostering and supporting project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3