Abstract
For upper extremity rehabilitation, quantitative measurements of a person’s capabilities during activities of daily living could provide useful information for therapists, including in telemedicine scenarios. Specifically, measurements of a person’s upper body kinematics could give information about which arm motions or movement features are in need of additional therapy, and their location within the home could give context to these motions. To that end, we present a new algorithm for identifying a person’s location in a region of interest based on a Bluetooth received signal strength (RSS) and present an experimental evaluation of this and a different Bluetooth RSS-based localization algorithm via fingerprinting. We further present algorithms for and experimental results of inferring the complete upper body kinematics based on three standalone inertial measurement unit (IMU) sensors mounted on the wrists and pelvis. Our experimental results for localization find the target location with a mean square error of 1.78 m. Our kinematics reconstruction algorithms gave lower errors with the pelvis sensor mounted on the person’s back and with individual calibrations for each test. With three standalone IMUs, the mean angular error for all of the upper body segment orientations was close to 21 degrees, and the estimated elbow and shoulder angles had mean errors of less than 4 degrees.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献