Bi-Level Planning of Electric Vehicle Charging Stations Considering Spatial–Temporal Distribution Characteristics of Charging Loads in Uncertain Environments

Author:

Gan Haiqing1,Ruan Wenjun1,Wang Mingshen2ORCID,Pan Yi2,Miu Huiyu2,Yuan Xiaodong2

Affiliation:

1. Jiangsu Power Grid Company Ltd., Nanjing 210024, China

2. The Electric Power Research Institute, Jiangsu Power Grid Company Ltd., Nanjing 211103, China

Abstract

With the increase in the number of distributed energy resources (DERs) and electric vehicles (EVs), it is particularly important to solve the problem of EV charging station siting and capacity determination under the distribution network considering a large proportion of DERs. This paper proposes a bi-level planning model for EV charging stations that takes into account the characteristics of the spatial–temporal distribution of charging loads under an uncertain environment. First, the Origin–Destination (OD) matrix analysis method and the real-time Dijkstra dynamic path search algorithm are introduced and combined with the Larin Hypercube Sampling (LHS) method to establish the EV charging load prediction model considering the spatial and temporal distribution characteristics. Second, the upper objective function with the objective of minimizing the cost of EV charging station planning and user charging behavior is constructed, while the lower objective function with the objective of minimizing the cost of distribution network operation and carbon emission cost considering the uncertainty of wind power and photovoltaics is constructed. The constraints of the lower-layer objective function are transformed into the upper-layer objective function through Karush–Kuhn–Tucker (KKT) conditions, the optimal location and capacity of charging stations are finally determined, and the model of EV charging station siting and capacity determination is established. Finally, the validity of the model was verified by planning the coupled IEEE 33-node distribution network with the traffic road map of a city in southeastern South Dakota, USA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3