Analysis of Spatiotemporal Dynamics of Land Desertification in Qilian Mountain National Park Based on Google Earth Engine

Author:

Chen Xiaowen123,Wang Naiang123,Peng Simin1,Meng Nan123,Lv Haoyun123

Affiliation:

1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730030, China

2. Center for Glacier and Desert Research, Lanzhou University, Lanzhou 730030, China

3. Scientific Observing Station for Desert and Glacier, Lanzhou University, Lanzhou 730030, China

Abstract

Notwithstanding the overall improvement in the ecological condition of the Qilian Mountains, there are localized occurrences of grassland degradation, desertification, and salinization. Moreover, timely and accurate acquisition of desertification information is a fundamental prerequisite for effective monitoring and prevention of desertification. Leveraging the Google Earth Engine (GEE) platform in conjunction with machine learning techniques, this study aims to identify and extract the spatiotemporal dynamics of desertification in the Qilian Mountain National Park (QMNP) and its surroundings (QMNPs) spanning from 1988 to 2023. Results show that based on the random forest algorithm, the multi-index inversion methodology achieves a commendable overall accuracy of 91.9% in desertification extraction. From 1988 to 2023, the gravity center of light desertification shifts southeastward, while centers characterized by moderate, severe, and extremely severe desertification display a westward retreat with fluctuations. The area of sandy land shows an expansion trend in the medium term, but after 2018, desertification in QMNPs reversed. As of 2023, the sandy land area measured 16,897.35 km2, accounting for 18.29% of the total area of QMNPs. The insights garnered from this study provide a valuable reference for regional desertification prevention and control in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3