A Semantic-Spatial Aware Data Conflation Approach for Place Knowledge Graphs

Author:

He Lianlian1,Li Hao2,Zhang Rui2

Affiliation:

1. School of Mathematics and Statistics, Hubei University of Education, No. 129 Second Gaoxin Road, East Lake Hi-Tech Zone, Wuhan 430205, China

2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China

Abstract

Recent advances in knowledge graphs show great promise to link various data together to provide a semantic network. Place is an important part in the big picture of the knowledge graph since it serves as a powerful glue to link any data to its georeference. A key technical challenge in constructing knowledge graphs with location nodes as geographical references is the matching of place entities. Traditional methods typically rely on rule-based matching or machine-learning techniques to determine if two place names refer to the same location. However, these approaches are often limited in the feature selection of places for matching criteria, resulting in imbalanced consideration of spatial and semantic features. Deep feature-based methods such as deep learning methods show great promise for improved place data conflation. This paper introduces a Semantic-Spatial Aware Representation Learning Model (SSARLM) for Place Matching. SSARLM liberates the tedious manual feature extraction step inherent in traditional methods, enabling an end-to-end place entity matching pipeline. Furthermore, we introduce an embedding fusion module designed for the unified encoding of semantic and spatial information. In the experiment, we evaluate the approach to named places from Guangzhou and Shanghai cities in GeoNames, OpenStreetMap (OSM), and Baidu Map. The SSARLM is compared with several classical and commonly used binary classification machine learning models, and the state-of-the-art large language model, GPT-4. The results demonstrate the benefit of pre-trained models in data conflation of named places.

Funder

Educational Commission of Hubei Province of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3