Chemical Behaviour of Copper in the Application of Unconstrained Cr-Ni-Al-Cu Metal Powders in Submerged Arc Welding: Gas Phase Thermodynamics and 3D Slag SEM Evidence

Author:

Coetsee Theresa1ORCID,De Bruin Frederik1

Affiliation:

1. Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002, South Africa

Abstract

Unconstrained metal powders of Cu, Cr, Ni and Al were applied to submerged arc welding (SAW) to clarify the chemical behaviour of copper in this modified SAW process. Aluminium metal is avoided in SAW because it is easily oxidised. Excessive aluminium oxides in the form of slag or inclusions in the weld metal will lead to poor weld metal materials properties. Aluminium is an effective deoxidiser and can be used to prevent Cr and Ni loss to the slag by preventing oxidation of these metals. The results show that carbon steel was alloyed to 5.3% Cr, 5.3% Ni, 3.6% Al and 5.2% Cu at 80% Cr yield, 81% Ni yield, 54% Al yield and 79% Cu yield. BSE (backscattered electron) images of the three-dimensional (3D) post-weld slag sample show 3D structures within the slag dome. The 3D structures contain features of vapour formation and recondensation. In addition, nano-strands appear in the 3D structures and confirm the vaporisation and recondensation of fluorides. The chemical behaviour of copper metal powder added in SAW is to vaporise as metallic copper and incorporate in the Al-Si-Mg-Ca-Mn-Fe-Cu-Na-Cr-Ni fluoride. Copper, in combination with aluminium, has a stabiliser effect in SAW due to its formation of an initial alloy melt of low liquidus temperature, thus decreasing the temperature required to melt high-melting-point metals such as Cr into the weld pool. Although Al and Cu have similar vapour pressures at specific temperatures, it appears that Cu does not substitute for Al in the gas phase. Gas-slag-alloy thermochemical equilibrium calculations confirm the partial oxygen pressure lowering effect of aluminium and the vaporisation of copper as metallic copper with very little copper-fluoride species expected to form. The quantity of metallic copper vaporisation calculated in the gas-slag-alloy thermochemical equilibrium is much higher than the vaporisation quantity measured in welding. This may be due to recondensation of vaporised copper which is not accounted for in the equilibrium calculation at the set arc cavity temperature, as well as the effect of surface-active elements such as sulphur and oxygen in limiting the vaporisation reaction of copper.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Physical phenomena in the weld zone of submerged arc welding—A Review;Sengupta;Weld. J.,2019

2. O’Brien, A. (2011). Welding Handbook—Materials and Applications, Part 1, American Welding Society (AWS). [9th ed.].

3. Flux composition dependence of microstructure and toughness of submerged arc HSLA weldments;Dallam;Weld. J.,1985

4. Electrochemically generated oxygen contamination in submerged arc welding;Polar;Weld. J.,1990

5. The sources of oxygen and nitrogen contamination in submerged arc welding using CaO-Al2O3 based fluxes;Lau;Weld. J.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3