Molecular Dynamics Simulation of the Interfacial Structure and Differential Capacitance of [BMI+][PF6−] Ionic Liquids on MoS2 Electrode

Author:

Xu Chenxuan1,Xu Zhanpeng1,Wang Yihai1,Yang Junjie1,Chen Honghui1,Liu Qiuhua1,Chen Gang1,Yang Huachao2ORCID

Affiliation:

1. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China

2. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

MoS2 nanomaterials and ionic liquids (ILs) have attracted tremendous interest as the prime electrodes and electrolytes of supercapacitors. However, the corresponding charge storage mechanisms have not yet been clearly understood. Herein, we study the molecular-level energy storage mechanisms of the MoS2 electrode in imidazolium ionic liquid ([BMI+][PF6−]) using molecular dynamics (MD) simulation. The electric double-layer (EDL) structures of MoS2 electrodes in [BMI+][PF6−] electrolytes are comprehensively studied in terms of number density, MD snapshots, separation coefficient, and ion-electrode interaction energy. Based on this, the electric potential and electric field distributions are calculated by integrating Poisson equations. Importantly, a bell-shaped differential capacitance profile is proposed, different from the U-shaped curve from the conventional Gouy–Chapman theory. Especially, it can be well reproduced by the differential charge density curve in the Helmholtz layer. This indicates that the capacitive behaviors of the MoS2 electrode are primarily determined by the counterion population/structure in the EDL region 5.0 Å from the electrode surface. In the end, ion diffusion coefficients within different interfacial EDL regions are evaluated, revealing that dynamics are significantly suppressed by ~50% in the Helmholtz region. However, the dynamics can be recovered to a bulk state with the ion position 10 Å away from the electrode surface. The as-obtained insights reveal the charge storage mechanisms of MoS2 in ILs, which can provide useful guidance on improving the energy density of MoS2 supercapacitors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3