In-Situ Hydrothermal Synthesis of Ag3PO4/g-C3N4 Nanocomposites and Their Photocatalytic Decomposition of Sulfapyridine under Visible Light

Author:

Li Ke123,Chen Miaomiao1,Chen Lei1,Zhao Songying1,Xue Wencong1,Han Zixuan1,Han Yanchao2,Zhang Fuguo3,Yan Yu3,Dong Yanhong3

Affiliation:

1. Key Laboratory of Song Liao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China

2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

3. China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun 130021, China

Abstract

Highly efficient visible-light-driven heterogeneous photocatalyst Ag3PO4/g-C3N4 with different weight ratios from Ag3PO4 to g-C3N4 were synthesized by a facile in situ hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FTIR), photoluminescence spectra (PL), UV–vis diffuse reflectance spectra (UV-Vis), and electrochemical impedance spectra (EIS). Under visible light irradiation, Ag3PO4/g-C3N4 showed very excellent photocatalytic activity for sulfapyridine (SP) which is one of the widely used sulfonamide antibiotics. When the ratio from Ag3PO4 to g-C3N4 was 1:2, the degradation rate of SP at 120 min was found to be 94.1%, which was superior to that of pure Ag3PO4 and pure g-C3N4. Based on the experimental results, the possible enhanced photocatalytic mechanism of Ag3PO4/g-C3N4 was proposed.

Funder

National Natural Science Foundation of China

Science and Technology Research Planning Project of Jilin Provincial Department of Education

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3