Affiliation:
1. Institute of Mechanics and Materials, Technische Hochschule Mittelhessen, University of Applied Sciences, Wiesenstraße 14, 35390 Gießen, Germany
Abstract
To date, the fracture behaviour of soft, polyurethane-based adhesive joints has rarely been investigated. This work contributes to the experimental investigation of such joints in modes I and III by performing double cantilever beam (mode I) and out-of-plane loaded double cantilever beam (mode III) tests at various loading rates. The tests were evaluated using a J-integral method, which is well established for testing stiff adhesive layers and is conventionally used to determine the cohesive traction at the crack tip. Additionally, fibre-optics measurements were conducted to provide crack extension, process zone length, and cohesive traction from the measured backface strain of the adherends. It was found that the energy release rate seems to be largely independent of the loading mode. However, differences were observed regarding process zone length and resistance curve behaviour. Furthermore, the backface strain measurement allows the determination of the cohesive traction along with the complete adhesive layer as well as separation and separation rate, yielding rate-dependent cohesive laws. A comparison indicated that the cohesive traction obtained from the J-integral method does not match the measured benchmark from the backface strain measurements because the underlying theoretical assumptions of the J-integral method are likely violated for soft, rubber-like adhesive joints.
Funder
Federal Ministry for Economic Affairs and Climate Action
German Bundestag
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献