The Color Improvement of Underwater Images Based on Light Source and Detector

Author:

Quan Xiangqian,Wei Yucong,Li Bo,Liu Kaibin,Li Chen,Zhang Bing,Yang Jingchuan

Abstract

As one of the most direct approaches to perceive the world, optical images can provide plenty of useful information for underwater applications. However, underwater images often present color deviation due to the light attenuation in the water, which reduces the efficiency and accuracy in underwater applications. To improve the color reproduction of underwater images, we proposed a method with adjusting the spectral component of the light source and the spectral response of the detector. Then, we built the experimental setup to study the color deviation of underwater images with different lamps and different cameras. The experimental results showed that, a) in terms of light source, the color deviation of an underwater image with warm light LED (Light Emitting Diode) (with the value of Δa*2+Δb*2 being 26.58) was the smallest compared with other lamps, b) in terms of detectors, the color deviation of images with the 3×CMOS RGB camera (a novel underwater camera with three CMOS sensors developed for suppressing the color deviation in our team) (with the value of Δa*2+Δb*2 being 25.25) was the smallest compared with other cameras. The experimental result (i.e., the result of color improvement between different lamps or between different cameras) verified our assumption that the underwater image color could be improved by adjusting the spectral component of the light source and the spectral response of the detector. Differing from the color improvement method with image processing, this color-improvement method was based on hardware, which had advantages, including more image information being retained and less-time being consumed.

Funder

the Natural Science Foundation of Hainan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3