MCSM-Wri: A Small-Scale Motion Recognition Method Using WiFi Based on Multi-Scale Convolutional Neural Network

Author:

Ma ORCID,Huang ,Li ,Huang ,Ma ,Liu

Abstract

environmental perception technology based onWiFi, and some state-of-the-art techniques haveemerged. The wide application of small-scale motion recognition has aroused people’s concern.Handwritten letter is a kind of small scale motion, and the recognition for small-scale motion basedon WiFi has two characteristics. Small-scale action has little impact on WiFi signals changes inthe environment. The writing trajectories of certain uppercase letters are the same as the writingtrajectories of their corresponding lowercase letters, but they are different in size. These characteristicsbring challenges to small-scale motion recognition. The system for recognizing small-scale motion inmultiple classes with high accuracy urgently needs to be studied. Therefore, we propose MCSM-Wri,a device-free handwritten letter recognition system using WiFi, which leverages channel stateinformation (CSI) values extracted from WiFi packets to recognize handwritten letters, includinguppercase letters and lowercase letters. Firstly, we conducted data preproccessing to provide moreabundant information for recognition. Secondly, we proposed a ten-layers convolutional neuralnetwork (CNN) to solve the problem of the poor recognition due to small impact of small-scaleactions on environmental changes, and it also can solve the problem of identifying actions with thesame trajectory and different sizes by virtue of its multi-scale characteristics. Finally, we collected6240 instances for 52 kinds of handwritten letters from 6 volunteers. There are 3120 instances fromthe lab and 3120 instances are from the utility room. Using 10-fold cross-validation, the accuracyof MCSM-Wri is 95.31%, 96.68%, and 97.70% for the lab, the utility room, and the lab+utility room,respectively. Compared with Wi-Wri and SignFi, we increased the accuracy from 8.96% to 18.13% forrecognizing handwritten letters.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Leap Motionhttps://www.leapmotion.com

2. Latent Support Vector Machine Modeling for Sign Language Recognition with Kinect;Chao;ACM Trans. Intell. Syst. Technol.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3