A New Statistical Method for Determining the Clutter Covariance Matrix in Spatial–Temporal Adaptive Processing of a Radar Signal

Author:

Kawalec Adam1ORCID,Ślesicka Anna2,Ślesicki Błażej3ORCID

Affiliation:

1. Faculty of Mechatronics, Armament and Aerospace, Department of Anti-Aircraft Missile Sets, Military University of Technology, 00-908 Warsaw, Poland

2. Institute of Navigation, Polish Air Force University, 08-521 Dęblin, Poland

3. Department of Avionics and Control Systems, Faculty of Aviation Division, Polish Air Force University, 08-521 Dęblin, Poland

Abstract

In this article, a new statistical method for estimating the clutter covariance matrix in space–time adaptive radar signal processing (STAP) is presented and studied. The new method was designed for multiple-input–multiple-output (MIMO) radar with time division multiplexing (TDM). An extensive analysis of statistical and non-statistical methods for estimating the clutter covariance matrix in STAP is presented in this paper. In addition, the STAP algorithm for the standard statistical SMI clutter covariance matrix estimation method, which is based on QR distribution, has been presented. The new method is based on LU distribution with partial pivoting. Simulation results confirm the validity of the presented model and theoretical assumptions. In addition, more accurate object detection results were demonstrated for specific computational examples than for other statistical methods. Considering the current analysis of the literature, it is noted that attention has now been focused worldwide on the study of non-statistical methods for estimating clutter covariance matrices in heterogeneous environments. Hence, it should be emphasized that the posted study fills a gap in current research on STAP.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Covariance Methods for IoT-Based Remote Health Monitoring;Mobile Networks and Applications;2024-09-04

2. APPLICATION OF SPACE-TIME ADAPTIVE SIGNAL PROCESSING IN RADIOLOCATION;Aviation and Security Issues;2024-01-03

3. Clutter Covariance Matrix Estimation via KA-SADMM for STAP;IEEE Geoscience and Remote Sensing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3