Relative Entropy of Correct Proximal Policy Optimization Algorithms with Modified Penalty Factor in Complex Environment

Author:

Chen Weimin,Wong Kelvin Kian Loong,Long SifanORCID,Sun Zhili

Abstract

In the field of reinforcement learning, we propose a Correct Proximal Policy Optimization (CPPO) algorithm based on the modified penalty factor β and relative entropy in order to solve the robustness and stationarity of traditional algorithms. Firstly, In the process of reinforcement learning, this paper establishes a strategy evaluation mechanism through the policy distribution function. Secondly, the state space function is quantified by introducing entropy, whereby the approximation policy is used to approximate the real policy distribution, and the kernel function estimation and calculation of relative entropy is used to fit the reward function based on complex problem. Finally, through the comparative analysis on the classic test cases, we demonstrated that our proposed algorithm is effective, has a faster convergence speed and better performance than the traditional PPO algorithm, and the measure of the relative entropy can show the differences. In addition, it can more efficiently use the information of complex environment to learn policies. At the same time, not only can our paper explain the rationality of the policy distribution theory, the proposed framework can also balance between iteration steps, computational complexity and convergence speed, and we also introduced an effective measure of performance using the relative entropy concept.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference28 articles.

1. Mastering the game of Go without human knowledge

2. Benchmarking Deep Reinforcement Learning for Continuous Control;Yan;Proc. Mach. Learn. Res.,2016

3. Robot gains Social Intelligence through Multimodal Deep Reinforcement Learning;Hussain;arXiv,2017

4. Human-level control through deep reinforcement learning

5. Deep reinforcement learning: An overview;Li;arXiv,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3