Learning Visible Thermal Person Re-Identification via Spatial Dependence and Dual-Constraint Loss

Author:

Wang Chuandong,Zhang Chi,Feng Yujian,Ji Yimu,Ding Jianyu

Abstract

Visible thermal person re-identification (VT Re-ID) is the task of matching pedestrian images collected by thermal and visible light cameras. The two main challenges presented by VT Re-ID are the intra-class variation between pedestrian images and the cross-modality difference between visible and thermal images. Existing works have principally focused on local representation through cross-modality feature distribution, but ignore the internal connection of the local features of pedestrian body parts. Therefore, this paper proposes a dual-path attention network model to establish the spatial dependency relationship between the local features of the pedestrian feature map and to effectively enhance the feature extraction. Meanwhile, we propose cross-modality dual-constraint loss, which adds the center and boundary constraints for each class distribution in the embedding space to promote compactness within the class and enhance the separability between classes. Our experimental results show that our proposed approach has advantages over the state-of-the-art methods on the two public datasets SYSU-MM01 and RegDB. The result for the SYSU-MM01 is Rank-1/mAP 57.74%/54.35%, and the result for the RegDB is Rank-1/mAP 76.07%/69.43%.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference44 articles.

1. Mars: A video benchmark for large-scale person re-identification;Zheng,2016

2. Person re-identification: Past, present and future;Zheng;arXiv,2016

3. Personnet: Person re-identification with deep convolutional neural networks;Wu;arXiv,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3