From Entropy Generation to Exergy Efficiency at Varying Reference Environment Temperature: Case Study of an Air Handling Unit

Author:

Streckienė GiedrėORCID,Martinaitis Vytautas,Bielskus Juozas

Abstract

The continuous energy transformation processes in heating, ventilation, and air conditioning systems of buildings are responsible for 36% of global final energy consumption. Tighter thermal insulation requirements for buildings have significantly reduced heat transfer losses. Unfortunately, this has little effect on energy demand for ventilation. On the basis of the First and the Second Law of Thermodynamics, the concepts of entropy and exergy are applied to the analysis of ventilation air handling unit (AHU) with a heat pump, in this paper. This study aims to develop a consistent approach for this purpose, taking into account the variations of reference temperature and temperatures of working fluids. An analytical investigation on entropy generation and exergy analysis are used, when exergy is determined by calculating coenthalpies and evaluating exergy flows and their directions. The results show that each component of the AHU has its individual character of generated entropy, destroyed exergy, and exergy efficiency variation. However, the evaporator of the heat pump and fans have unabated quantities of exergy destruction. The exergy efficiency of AHU decreases from 45–55% to 12–15% when outdoor air temperature is within the range of −30 to +10 °C, respectively. This helps to determine the conditions and components of improving the exergy efficiency of the AHU at variable real-world local climate conditions. The presented methodological approach could be used in the dynamic modelling software and contribute to a wider application of the Second Law of Thermodynamics in practice.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3