IMU-Based Effects Assessment of the Use of Foot Orthoses in the Stance Phase during Running and Asymmetry between Extremities

Author:

Florenciano Restoy Juan Luis,Solé-Casals JordiORCID,Borràs-Boix Xantal

Abstract

The objectives of this study were to determine the amplitude of movement differences and asymmetries between feet during the stance phase and to evaluate the effects of foot orthoses (FOs) on foot kinematics in the stance phase during running. In total, 40 males were recruited (age: 43.0 ± 13.8 years, weight: 72.0 ± 5.5 kg, height: 175.5 ± 7.0 cm). Participants ran on a running treadmill at 2.5 m/s using their own footwear, with and without the FOs. Two inertial sensors fixed on the instep of each of the participant’s footwear were used. Amplitude of movement along each axis, contact time and number of steps were considered in the analysis. The results indicate that the movement in the sagittal plane is symmetric, but that it is not in the frontal and transverse planes. The right foot displayed more degrees of movement amplitude than the left foot although these differences are only significant in the abduction case. When FOs are used, a decrease in amplitude of movement in the three axes is observed, except for the dorsi-plantar flexion in the left foot and both feet combined. The contact time and the total step time show a significant increase when FOs are used, but the number of steps is not altered, suggesting that FOs do not interfere in running technique. The reduction in the amplitude of movement would indicate that FOs could be used as a preventive tool. The FOs do not influence the asymmetry of the amplitude of movement observed between feet, and this risk factor is maintained. IMU devices are useful tools to detect risk factors related to running injuries. With its use, even more personalized FOs could be manufactured.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3