Multi-Level and Multi-Scale Feature Aggregation Network for Semantic Segmentation in Vehicle-Mounted Scenes

Author:

Liao YongORCID,Liu Qiong

Abstract

The main challenges of semantic segmentation in vehicle-mounted scenes are object scale variation and trading off model accuracy and efficiency. Lightweight backbone networks for semantic segmentation usually extract single-scale features layer-by-layer only by using a fixed receptive field. Most modern real-time semantic segmentation networks heavily compromise spatial details when encoding semantics, and sacrifice accuracy for speed. Many improving strategies adopt dilated convolution and add a sub-network, in which either intensive computation or redundant parameters are brought. We propose a multi-level and multi-scale feature aggregation network (MMFANet). A spatial pyramid module is designed by cascading dilated convolutions with different receptive fields to extract multi-scale features layer-by-layer. Subseqently, a lightweight backbone network is built by reducing the feature channel capacity of the module. To improve the accuracy of our network, we design two additional modules to separately capture spatial details and high-level semantics from the backbone network without significantly increasing the computation cost. Comprehensive experimental results show that our model achieves 79.3% MIoU on the Cityscapes test dataset at a speed of 58.5 FPS, and it is more accurate than SwiftNet (75.5% MIoU). Furthermore, the number of parameters of our model is at least 53.38% less than that of other state-of-the-art models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Importance-Aware Semantic Segmentation for Autonomous Vehicles

2. TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation;Zhang;arXiv,2021

3. Deep ensembles based on Stochastic Activation Selection for Polyp Segmentation;Lumini;arXiv,2021

4. Self-Supervised Learning for Segmentation;Dhere;arXiv,2021

5. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3