Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time

Author:

Zubalic Emil,Vella Daniele,Babnik Aleš,Jezeršek MatijaORCID

Abstract

Cavitation bubbles are used in medicine as a mechanism to generate shock waves. The study of cavitation bubble dynamics plays a crucial role in understanding and utilizing such phenomena for practical applications and purposes. Since the lifetime of cavitation bubbles is in the range of hundreds of microseconds and the radii are in the millimeter range, the observation of bubble dynamics requires complicated and expensive equipment. High-speed cameras or other optical techniques require transparent containers or at least a transparent optical window to access the region. Fiber optic probe tips are commonly used to monitor water pressure, density, and temperature, but no study has used a fiber tip sensor in an interferometric setup to measure cavitation bubble dynamics. We present how a fiber tip sensor system, originally intended as a hydrophone, can be used to track the expansion and contraction of cavitation bubbles. The measurement is based on interference between light reflected from the fiber tip surface and light reflected from the cavitation bubble itself. We used a continuous-wave laser to generate cavitation bubbles and a high-speed camera to validate our measurements. The shock wave resulting from the collapse of a bubble can also be measured with a delay in the order of 1 µs since the probe tip can be placed less than 1 mm away from the origin of the cavitation bubble. By combining the information on the bubble expansion velocity and the time of bubble collapse, the lifetime of a bubble can be estimated. The bubble expansion velocity is measured with a spatial resolution of 488 nm, half the wavelength of the measuring laser. Our results demonstrate an alternative method for monitoring bubble dynamics without the need for expensive equipment. The method is flexible and can be adapted to different environmental conditions, opening up new perspectives in many application areas.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Hurrell, A., and Beard, P. (2012). Piezoelectric and Fibre-Optic Hydrophones. Ultrason. Transducers Mater. Des. Sens. Actuators Med. Appl., 619–676.

2. Cost-Effective Assembly of a Basic Fiber-Optic Hydrophone for Measurement of High-Amplitude Therapeutic Ultrasound Fields;Parsons;J. Acoust. Soc. Am.,2006

3. Single-Mode Fiber Ultrasonic Sensor;Cole;IEEE J. Quantum Electron.,1982

4. Wurster, C., Staudenraus, J., and Eisenmenger, W. (November, January 31). Fiber Optic Probe Hydrophone. Proceedings of the IEEE Ultrasonics Symposium, Cannes, France.

5. Localized Measurement of a Sub-Nanosecond Shockwave Pressure Rise Time;Petelin;IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3