A New Octagonal Close Ring Resonator Based Dumbbell-Shaped Tuning Fork Perfect Metamaterial Absorber for C- and Ku-Band Applications

Author:

Afsar Md Salah Uddin,Faruque Mohammad Rashed IqbalORCID,Hossain Md Bellal,Siddiky Air Mohammad,Khandaker Mayeen UddinORCID,Alqahtani AmalORCID,Bradley D. A.

Abstract

In this paper, a new octagonal close ring resonator (OCRR)-based dumbbell-shaped tuning fork perfect metamaterial absorber for C- and Ku-band applications is presented. This design is a new combination of an octagonal ring close ring resonator with two dumbbell-shaped tuning forks metal strips integrated on epoxy resin dielectric substrate. The proposed perfect metamaterial absorber (PMA) is assessed by finite-integration technique (FIT)-based electromagnetic simulator-Computer simulation technology (CST) software. The anticipated assembly reveals dual resonance frequencies of 6.45 GHz and 14.89 GHz at 99.15% and 99.76% absorption, respectively, for TE incidence. The projected design is augmented through various types of parametric studies, such as design optimization, the effect of the octagonal ring resonator width, and varying the split gap of the double tuning fork. The numerical results are also investigated and verified using the equivalent circuit model, another electromagnetic simulator high frequency structural simulator (HFSS), and different array combinations that showed very negligible disparity. The TE polarization wave is applied to analyze the absorption separately and oblique incidence angle showing polarization insensitivity up to 30° and wide incident angle up to 60°. The presented metamaterial absorber is suitable for satellite communication bands, stealth-coating technology, and defense and security applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3