Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer

Author:

Kim Yeon-Wook,Cho Woo-HyeongORCID,Kim Kyu-Sung,Lee Sangmin

Abstract

Inertial-measurement-unit (IMU)-based human activity recognition (HAR) studies have improved their performance owing to the latest classification model. In this study, the conformer, which is a state-of-the-art (SOTA) model in the field of speech recognition, is introduced in HAR to improve the performance of the transformer-based HAR model. The transformer model has a multi-head self-attention structure that can extract temporal dependency well, similar to the recurrent neural network (RNN) series while having higher computational efficiency than the RNN series. However, recent HAR studies have shown good performance by combining an RNN-series and convolutional neural network (CNN) model. Therefore, the performance of the transformer-based HAR study can be improved by adding a CNN layer that extracts local features well. The model that improved these points is the conformer-based-model model. To evaluate the proposed model, WISDM, UCI-HAR, and PAMAP2 datasets were used. A synthetic minority oversampling technique was used for the data augmentation algorithm to improve the dataset. From the experiment, the conformer-based HAR model showed better performance than baseline models: the transformer-based-model and the 1D-CNN HAR models. Moreover, the performance of the proposed algorithm was superior to that of algorithms proposed in recent similar studies which do not use RNN-series.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TS2ACT;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

2. Transformer Model for Human Activity Recognition Using IoT Wearables;Lecture Notes in Electrical Engineering;2023-12-02

3. A Method of Self-Supervised Denoising and Classification for Sensor-Based Human Activity Recognition;IEEE Sensors Journal;2023-11-15

4. Efficient Human Gait Activity Recognition Based on Sensor Fusion and Intelligent Stacking Framework;IEEE Sensors Journal;2023-11-15

5. Transformer-based models to deal with heterogeneous environments in Human Activity Recognition;Personal and Ubiquitous Computing;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3