Impact of Material Solutions and a Passive Sports Hall’s Use on Thermal Comfort

Author:

Dudzińska Anna1ORCID,Kisilewicz Tomasz1ORCID,Panasiuk Ewelina2ORCID

Affiliation:

1. Building Design and Building Physics, Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

2. Architecture of Work-Place, Sport and Favor, Faculty of Architecture, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Abstract

High outdoor temperatures and thermal gains due to solar radiation, which penetrates the interior of buildings as the climate warms up, pose a major challenge to maintaining thermal comfort in passive sports facilities. Superbly insulated and airtight envelopes, specific microclimatic requirements and very high user activity can easily lead to overheating and thermal imbalance during summer. This paper focuses on the influence of the varying thermal capacity of external walls and night-time cooling on thermal comfort in a passive sports hall building. Based on experimental studies of the thermal conditions in the building, a model of it was created in Design Builder. Through simulation, the program initially analysed the thermal conditions that arise under different envelope assemblies. Two different ways of cooling the building at night were then analysed: mechanical and natural. The results presented showed that in a well-insulated sports hall with a large volume, the type of wall material alone had only a limited influence on thermal comfort in summer. In contrast, night-time cooling in integration with the accumulation of cold in the building’s structural components had a significant impact on protection against overheating during the summer. The type of envelope material is even more important when night-time air exchange is high. Intensive natural ventilation is associated with the highest number of hours in the comfort range—28.1–32.4% more hours in relation to the variant without night ventilation. The use of mechanical ventilation, operating at night at maximum capacity, will result in an increase in the number of hours with air temperatures in the −0.5 < PMV < +0.5 range by only 14.1–21.3%. The high thermal mass of the envelope, combined with adequate ventilation, reduces the occurrence of very high indoor air temperatures, thus alleviating the nuisance of overheating. The maximum internal air temperature during the day is lower by 2.4–3.3 K, compared to the case when no night ventilation is used. Mechanical ventilation operating at its maximum capacity can reduce the maximum internal temperature by 1.2–1.6 K.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3