Electrifying Green Logistics: A Comparative Life Cycle Assessment of Electric and Internal Combustion Engine Vehicles

Author:

Oliveri Ludovica Maria1ORCID,D’Urso Diego1,Trapani Natalia1ORCID,Chiacchio Ferdinando1ORCID

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95123 Catania, Italy

Abstract

Green logistics is an approach aimed at reducing the environmental impact of transport, storage, and distribution practices, through low-emission vehicles, optimized routes, clean energy tech in warehouses, and efficient waste management. These solutions can contribute to achieving the sustainable development goals of the European Green Deal. The main research question of this paper is whether an electric vehicle has a lower environmental impact compared to a gasoline vehicle. This study presents a life cycle assessment (LCA) of an electric vehicle using lithium-ion battery technology (BEV) and compares it to an internal combustion engine vehicle (ICEV), considering the transportable load within the context of Italy. Through a gate-to-grave approach, both vehicles’ life cycle use and disposal phases were evaluated to identify the hotspots of environmental impact. The LCA methodology allows for an objective comparison and the results show that BEV emits slightly less kgCO2eq than ICEVs. The primary contributor to the vehicles’ impact is the dependency of the electric energy primary source from fossil fuels. Therefore, a second analysis was conducted to analyse the benefit of photovoltaic panels to generate the electric energy, showing that it can result in a significant 50% reduction in impact, making the electric vehicle a valid solution for achieving green logistics objectives. However, the questions of electric energy production, management, and distribution together with the supply of raw material and disposal of lithium batteries remain open. This issue raises a concern regarding the BEV in a country like Italy where the lack of recharging points limits the adoption of electric vehicles in green logistics.

Funder

University of Catania

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. (2016). EEA Key Findings–Climate Change, Impacts and Vulnerability in Europe 2016, European Environment Agency.

2. Paris Agreement;Horowitz;Int. Leg. Mater.,2016

3. EU Commission Regulation (EU) (2021). 1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality. Off. J. Eur. Union, L243, 1–17.

4. Large Scale Simulation of CO2 Emissions Caused by Urban Car Traffic: An Agent-Based Network Approach;Hofer;J. Clean. Prod.,2018

5. Electricity System and Emission Impact of Direct and Indirect Electrification of Heavy-Duty Transportation;Keller;Energy,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3