Changes in Atmospheric, Meteorological, and Ocean Parameters Associated with the 12 January 2020 Taal Volcanic Eruption

Author:

Jing FengORCID,Chauhan AkshanshaORCID,P Singh RameshORCID,Dash Prasanjit

Abstract

The Taal volcano erupted on 12 January 2020, the first time since 1977. About 35 mild earthquakes (magnitude greater than 4.0) were observed on 12 January 2020 induced from the eruption. In the present paper, we analyzed optical properties of volcanic aerosols, volcanic gas emission, ocean parameters using multi-satellite sensors, namely, MODIS (Moderate Resolution Imaging Spectroradiometer), AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) and ground observations, namely, Argo, and AERONET (AErosol RObotic NETwork) data. Our detailed analysis shows pronounced changes in all the parameters, which mainly occurred in the western and south-western regions because the airmass of the Taal volcano spreads westward according to the analysis of airmass trajectories and wind directions. The presence of finer particles has been observed by analyzing aerosol properties that can be attributed to the volcanic plume after the eruption. We have also observed an enhancement in SO2, CO, and water vapor, and a decrease in Ozone after a few days of the eruption. The unusual variations in salinity, sea temperature, and surface latent heat flux have been observed as a result of the ash from the Taal volcano in the south-west and south-east over the ocean. Our results demonstrate that the observations combining satellite with ground data could provide important information about the changes in the atmosphere, meteorology, and ocean parameters associated with the Taal volcanic eruption.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Natural Hazards: Earthquakes, Volcanoes, and Landslides. Radar Monitoring of Volcanic Activities;Lu,2018

2. Impact of powerful volcanic eruptions and solar activity on the climate above the Arctic Circle

3. Long-term health effects of the Eyjafjallajökull volcanic eruption: a prospective cohort study in 2010 and 2013

4. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

5. Air pollution in Iceland and the effects on human health. Review;Guðmundsson;Laeknabladid,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3