Nonlocal CNN SAR Image Despeckling

Author:

Cozzolino DavideORCID,Verdoliva LuisaORCID,Scarpa GiuseppeORCID,Poggi GiovanniORCID

Abstract

We propose a new method for SAR image despeckling, which performs nonlocal filtering with a deep learning engine. Nonlocal filtering has proven very effective for SAR despeckling. The key idea is to exploit image self-similarities to estimate the hidden signal. In its simplest form, pixel-wise nonlocal means, the target pixel is estimated through a weighted average of neighbors, with weights chosen on the basis of a patch-wise measure of similarity. Here, we keep the very same structure of plain nonlocal means, to ensure interpretability of results, but use a convolutional neural network to assign weights to estimators. Suitable nonlocal layers are used in the network to take into account information in a large analysis window. Experiments on both simulated and real-world SAR images show that the proposed method exhibits state-of-the-art performance. In addition, the comparison of weights generated by conventional and deep learning-based nonlocal means provides new insight into the potential and limits of nonlocal information for SAR despeckling.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collaborative masking based speckle disentanglement for self-supervised optical coherence tomography image despeckling;Optics and Lasers in Engineering;2024-12

2. Analysis of Despeckling Filters Using Ratio Images and Divergence Measurement;Remote Sensing;2024-08-08

3. Different Training Solution for Amplitude SAR Despeckling;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Qspecklefilter: A Quantum Machine Learning Approach for SAR Speckle Filtering;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. Robust SAR Image Despeckling by Deep Learning From Near-Real Datasets;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3