The role of Interferometric Synthetic Aperture Radar in Detecting, Mapping, Monitoring, and Modelling the Volcanic Activity of Piton de la Fournaise, La Réunion: A Review

Author:

Richter Nicole,Froger Jean-Luc

Abstract

Synthetic Aperture Radar (SAR) remote sensing plays a significant role in volcano monitoring despite the measurements’ non real-time nature. The technique’s capability of imaging the spatial extent of ground motion has especially helped to shed light on the location, shape, and dynamics of subsurface magmatic storage and transport as well as the overall state of activity of volcanoes worldwide. A variety of different deformation phenomena are observed at exceptionally active and frequently erupting volcanoes, like Piton de la Fournaise on La Réunion Island. Those offer a powerful means of investigating related geophysical source processes and offer new insights into an active volcano’s edifice architecture, stability, and eruptive behavior. Since 1998, Interferometric Synthetic Aperture Radar (InSAR) has been playing an increasingly important role in developing our present understanding of the Piton de la Fournaise volcanic system. We here collect the most significant scientific results, identify limitations, and summarize the lessons learned from exploring the rich Piton de la Fournaise SAR data archive over the past ~20 years. For instance, the technique has delivered first evidence of the previously long suspected mobility of the volcano’s unsupported eastern flank, and it is especially useful for detecting displacements related to eruptions that occur far away from the central cone, where Global Navigation Satellite System (GNSS) stations are sparse. However, superimposed deformation processes, dense vegetation along the volcano’s lower eastern flank, and turbulent atmospheric phase contributions make Piton de la Fournaise a challenging target for applying InSAR. Multitemporal InSAR approaches that have the potential to overcome some of these limitations suffer from frequent eruptions that cause the replacement of scatterers. With increasing data acquisition rates, multisensor complementarity, and advanced processing techniques that resourcefully handle large data repositories, InSAR is progressively evolving into a near-real-time, complementary, operational volcano monitoring tool. We therefore emphasize the importance of InSAR at highly active and well-monitored volcanoes such as Mount Etna, Italy, Kīlauea Volcano, Hawai’i, and Piton de la Fournaise, La Réunion.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3