Multistage Dynamic Optimization with Different Forms of Neural-State Constraints to Avoid Many Object Collisions Based on Radar Remote Sensing

Author:

Lisowski JózefORCID

Abstract

This article presents the possibility of helping navigators direct the movement of an object, while safely passing through other objects, using an artificial neural network and optimization methods. It has been shown that the best trajectory of an object in terms of optimality and security, from among many possible options, can be determined by the method of dynamic programming with the simultaneous use of an artificial neural network, by depicting the encountered objects as moving in forbidden domains. Analytical considerations are illustrated with examples of simulation studies of the developed calculation program on real navigational situations at sea. This research took into account both the number of objects encountered and the different shapes of domains assigned to the objects encountered. Finally, the optimal value of the safe object trajectory time was compared on the setpoint value of the safe passing distance of objects in given visibility conditions at sea, and the degree of discretization of calculations was determined by the density of the location of nodes along the route of objects.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3