Influence of the Sun Position and Platform Orientation on the Quality of Imagery Obtained from Unmanned Aerial Vehicles

Author:

Sekrecka AleksandraORCID,Wierzbicki DamianORCID,Kedzierski MichalORCID

Abstract

Images acquired at a low altitude can be the source of accurate information about various environmental phenomena. Often, however, this information is distorted by various factors, so a correction of the images needs to be performed to recreate the actual reflective properties of the imaged area. Due to the low flight altitude, the correction of images from UAVs (unmanned aerial vehicles) is usually limited to noise reduction and detector errors. The article shows the influence of the Sun position and platform deviation angles on the quality of images obtained by UAVs. Tilting the camera placed on an unmanned platform leads to incorrect exposures of imagery, and the order of this distortion depends on the position of the Sun during imaging. An image can be considered in three-dimensional space, where the x and y coordinates determine the position of the pixel and the third dimension determines its exposure. This assumption is the basis for the proposed method of image exposure compensation. A three-dimensional transformation by rotation is used to determine the adjustment matrix to correct the image quality. The adjustments depend on the angles of the platform and the difference between the direction of flight and the position of the Sun. An additional factor regulates the value of the adjustment depending on the ratio of the pitch and roll angles. The experiments were carried out for two sets of data obtained with different unmanned systems. The correction method used can improve the block exposure by up to 60%. The method gives the best results for simple systems, not equipped with lighting compensation systems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture

2. Application of UAV Photogrammetric System for Monitoring Ancient Tree Communities in Beijing

3. Ecohydrology with unmanned aerial vehicles

4. Radiometric Correction of Satellite Images—Methodology and Exemplification;Jakomulska,2001

5. Procedures for Correcting Digital Camera Imagery Acquired by the AggieAir Remote Sensing Platform;Clemens,2012

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3