Effect of Surface Roughness on the Performance of a Shallow Spiral Groove Liquid Mechanical Seal

Author:

Chen Huilong,Chen YingjianORCID,Han Ting,Fu Yanxia,Cheng Qian,Wei Zepeng,Zhao Bingjuan

Abstract

Because surface roughness is similar to the size of the sealing gap in terms of scale, the effect of surface roughness on sealing performance must be considered. A calculation model determining the micro-gap flow and surface roughness is used to prove that the existence of surface roughness can effectively improve the sealing performance and that it can especially improve the opening force. The results indicated that the opening force of the lubrication film increases as the surface roughness increases and that the growth rate increases as the rotating speed increases. Due to different roughness sensitivities, the opening force increases differently in different parts of the seal. With regard to leakage, the roughness of the rotating ring’s grooved zone only increases the negative leakage when the rotating speed is higher than 8000 rpm. When the non-grooved zone of the rotating ring is rough, it can inhibit the negative leakage flow and cause the negative leakage to become positive when the rotating speed is higher than 1000 rpm. When the end face of the stationary ring is rough, the amount of leakage decreases. Furthermore, the surface roughness increases the friction torque when the rotating speed is higher than 5000 rpm. When the rotating speed is in the range of 1000–10,000 rpm, the roughness of the non-grooved area and the end face of the rotating ring increase the opening force by 2.40~57.94% and 3.55~69.33%, respectively. Meanwhile, by defining SF and SQ, a scheme for providing sealing performance is provided.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3