Experimental Investigation of the Growth Law of Multi-Fracture during Temporary Plugging Fracturing within a Stage of Multi-Cluster in a Horizontal Well

Author:

Li Yanchao,Zhang Qing,Zou Yushi

Abstract

Temporary plugging fracturing in a horizontal well with multi-stages and multi-clusters is usually used to improve stimulation efficiency and increase the gas production from shale gas reservoirs. However, the fracture propagation geometry and the mechanism of temporary plugging are still unclear, which restricts the further optimization of temporary plugging fracturing scheme. In this study, taking the Longmaxi shale as the research object and considering the intrafracture and intrastage temporary plugging, the true tri-axial hydraulic fracturing system was used to put forward an experimental method for simulating the temporary plugging fracturing in a horizontal well with multi-stages and multi-clusters. Afterward, the effects of the size combination and concentration of temporary plugging agents and the cluster number in a stage on the fracture geometry created in the secondary fracturing were investigated in detail. The results show that an optimal fracture propagation geometry tends to be obtained by using the combinations of 100 to 20/70 mesh, and 20/70 to 10~18 mesh temporary plugging agents for the intrafracture and intrastage temporary plugging, respectively. Increasing the proportion of the temporary plugging agent of a larger particle size can improve the effectiveness of intrafracture and intrastage temporary plugging fracturing, and tends to open new fractures. With the increase in temporary plugging agent concentration and the cluster number within a stage, both the number of diverting fractures formed and the overall complexity of fractures tend to increase. After fracturing, the rock specimen with a high peak in the temporary plugging pressure curve has more transverse fractures, indicating a desirable diversion effect. By contrast, the fractured rock specimen with a low peak pressure has no transverse fracture, generally with fewer fractures and poor diversion effect.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference33 articles.

1. Influence of critical fluid pressure for fracture closure on oil and gas field development;Liu;Nat. Gas Ind.,2005

2. Fracture closure modes during flowback from hydraulic fractures;Taleghani;Int. J. Numer. Anal. Methods Geomech.,2020

3. Numerical Analysis of Complex Fracture Propagation Under Temporary Plugging Conditions in a Naturally Fractured Reservoir;Lu;SPE Prod. Oper.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3