Determination of Cross-Directional and Cross-Wall Variations of Passive Biaxial Mechanical Properties of Rat Myocardia

Author:

Ngwangwa Harry,Nemavhola FulufheloORCID,Pandelani ThanyaniORCID,Msibi Makhosasana,Mabuda Israel,Davies Neil,Franz Thomas

Abstract

Heart myocardia are critical to the facilitation of heart pumping and blood circulating around the body. The biaxial mechanical testing of the left ventricle (LV) has been extensively utilised to build the computational model of the whole heart with little importance given to the unique mechanical properties of the right ventricle (RV) and cardiac septum (SPW). Most of those studies focussed on the LV of the heart and then applied the obtained characteristics with a few modifications to the right side of the heart. However, the assumption that the LV characteristics applies to the RV has been contested over time with the realisation that the right side of the heart possesses its own unique mechanical properties that are widely distinct from that of the left side of the heart. This paper evaluates the passive mechanical property differences in the three main walls of the rat heart based on biaxial tensile test data. Fifteen mature Wistar rats weighing 225 ± 25 g were euthanised by inhalation of 5% halothane. The hearts were excised after which all the top chambers comprising the two atria, pulmonary and vena cava trunks, aorta, and valves were all dissected out. Then, 5 × 5 mm sections from the middle of each wall were carefully dissected with a surgical knife to avoid overly pre-straining the specimens. The specimens were subjected to tensile testing. The elastic moduli, peak stresses in the toe region and stresses at 40% strain, anisotropy indices, as well as the stored strain energy in the toe and linear region of up to 40% strain were used for statistical significance tests. The main findings of this study are: (1) LV and SPW tissues have relatively shorter toe regions of 10–15% strain as compared to RV tissue, whose toe region extends up to twice as much as that; (2) LV tissues have a higher strain energy storage in the linear region despite being lower in stiffness than the RV; and (3) the SPW has the highest strain energy storage along both directions, which might be directly related to its high level of anisotropy. These findings, though for a specific animal species at similar age and around the same body mass, emphasise the importance of the application of wall-specific material parameters to obtain accurate ventricular hyperelastic models. The findings further enhance our understanding of the desired mechanical behaviour of the different ventricle walls.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference38 articles.

1. Mechanics of the septal wall may be affected by the presence of fibrotic infarct in the free wall at end-systole;Nemavhola;Int. J. Med. Eng. Inform.,2019

2. Fibrotic infarction on the LV free wall may alter the mechanics of healthy septal wall during passive filling

3. Biaxial quantification of passive porcine myocardium elastic properties by region

4. Biaxial mechanical characterization and constitutive modelling of sheep sclera soft tissue;Ndlovu;Russ. J. Biomech./Ross. Zurnal Biomehaniki,2020

5. Evaluating computational performances of hyperelastic models on supraspinatus tendon uniaxial tensile test data;Ngwangwa;J. Comput. Appl. Mech.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3