Latest Advances in Waste Plastic Pyrolytic Catalysis

Author:

Yansaneh Osman Y.ORCID,Zein Sharif H.

Abstract

With the increase in demand for plastic use, waste plastic (WP) management remains a challenge in the contemporary world due to the lack of sustainable efforts to tackle it. The increment in WPs is proportional to man’s demand and use of plastics, and these come along with environmental challenges. This increase in WPs, and the resulting environmental consequences are mainly due to the characteristic biodegradation properties of plastics. Landfilling, pollution, groundwater contamination, incineration, and blockage of drainages are common environmental challenges associated with WPs. The bulk of these WPs constitutes polyethene (PE), polyethene terephthalate (PET) and polystyrene (PS). Pyrolysis is an eco-friendly thermo-chemical waste plastic treatment solution for valuable product recovery, preferred over landfilling and incineration solutions. In this extensive review, a critical investigation on waste plastic catalytic pyrolysis (WPCP) is performed, including catalyst and non-catalyst applications to sustainably tackle WP management. Current catalysis techniques are revealed, and some comparisons are made where necessary. Common pyrolytic products and common shortcomings and errors related to WP catalysis were also identified. The benefits of catalysts and their applications to augment and optimise thermal pyrolysis are emphasised. With all these findings, and more, this paper provides reassurance on the significance of catalysis to industrial-scale applications and products and supports related WPCP research work concerning the environment and other beneficiaries.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference131 articles.

1. Pyrolysisadvocacy, (n.d). Pyrolysis Explainedhttps://www.pyrolysisadvocacy.com/pyrolysis-explained

2. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons

3. Pyrolysis of Municipal Wastes. BioEnergy Consult Powering a Greener Future. 29 July 2020https://www.bioenergyconsult.com/pyrolysis-of-municipal-waste/

4. Britannica. “Catalyst”. Chemistryhttps://www.britannica.com/science/catalyst

5. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3