Water Purification Effect of Ecological Floating Bed Combination Based on the Numerical Simulation

Author:

Qiu Lanqing,Yu Ping,Li Shaofei,Ma Huixin,Li Danying,Li Jianzhu

Abstract

The Wuqing urban section of the North Canal Basin, Tianjin, is a significant gathering place for multisource pollution, showing the characteristics of a stagnant water body supplied by unconventional water sources. With the development of the economy and society, the water quality of the Wuqing urban section of the North Canal Basin, Tianjin, has been seriously polluted due to the discharge of sewage outlets and the influx of nonpoint source pollution from farmland. In this study, based on the results of special water experiments, a two-dimensional hydrodynamic water quality model was constructed. The concentrations of ammonia nitrogen (NH3-N), total phosphorus (TP), and chemical oxygen demand (COD) in the study area were simulated, and the model parameters were calibrated and verified with the measured values. Based on the model verification, the water quality improvement scheme of the ecological floating bed with different plant ratios was set up to simulate the water quality. The research results showed that the average concentrations of NH3-N, TP, and COD decreased by 10.4%, 15.7%, and of d 26.3%, respectively, after the ecological floating bed was arranged. During model parameter calibration and validation, the RMSE ranges of NH3-N, TP, and COD were 0.09~0.22 mg/L, 0.00~0.02 mg/L, and 0.37~2.42 mg/L, respectively. Other statistical indicators are also within a reasonable range, and the model accuracy and reliability are high. The simulation results of different scenarios showed that the optimal ratio of ecological floating bed plants was 700 m2 of Scirpus validus Vahl and 700 m2 of Canna in zone 1 of the floating bed combination, 430 m2 of Scirpus validus Vahl, and 170 m2 of Iris in zone 2 of the floating bed combination, and 200 m2 of Iris and 200 m2 of Lythrum salicaria in zone 3 of the floating bed combination. This study can provide a theoretical basis for the sustainable development of water purification in the North Canal. It can also provide a model approach for the implementation of river water purification schemes, exemplified by the North Canal.

Funder

Scientific Research Program of Tianjin Education Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3