Spatial Variation in Desert Spring Vegetation Biomass, Richness and Their Environmental Controls in the Arid Region of Central Asia

Author:

Zhou Shijie,Dong YiqiangORCID,Julihaiti Asitaiken,Nie Tingting,Jiang Anjing,An Shazhou

Abstract

A precise evaluation of spatial patterns in desert vegetation biomass, species richness and their environmental controls is essential for a deeper comprehension of the potential carbon preservation and sustainability of grassland ecosystems. There are widespread reports suggesting robust associations among biomass, species richness and mean annual precipitation (MAP) or temperature (MAT) at different scales. However, these reports were inconsistent, and knowledge on the desert grasslands of Central Asia remains limited. In this study, we showed that spatial patterns of biomass and species richness along the zonal climate of the northern Tianshan Mountains exhibited substantial regional differences and the relationship among biomass, richness and elevation exhibited a substantial exponential decline. We discovered that functional groups of biomass, total biomass and species richness in the desert exhibited exponential growth along the MAP gradient and a quadratic relationship with MAT. Furthermore, the biomass–species richness relationships were bell-shaped in the desert zone. Accordingly, the biomass and species richness had spatial differences. At a regional scale, the spatial variation in the desert biomass and species richness was primarily dependent on climate. Our results demonstrated the specificity between the desert vegetation and climate in arid regions of Central Asia and revealed the regularity between biomass and species richness in desert areas. The research results emphasized the impact of precipitation on desert vegetation in arid regions of Central Asia and the relationship between biomass and plant species richness, which is of great significance for understanding desert ecosystems and protecting the ecological environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3